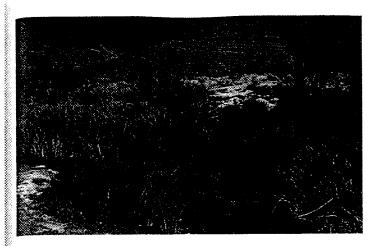
42 Ecosystems and Energy

KEY CONCEPTS

- **42.1** Physical laws govern energy flow and chemical cycling in ecosystems
- **42.2** Energy and other limiting factors control primary production in ecosystems
- **42.3** Energy transfer between trophic levels is typically only 10% efficient
- **42.4** Biological and geochemical processes cycle nutrients and water in ecosystems
- **42.5** Restoration ecologists return degraded ecosystems to a more natural state

a constant input of free energy and an exchange of matter with the environment (Big Idea 2). In an ecosystem, energy flows but matter is recycled (Big Idea 4). Multiple strategies exist for managing the transfer of energy and matter within an ecosystem (Big Idea 2).

▲ Figure 42.1 How can a fox transform a grassland into tundra?


Transformed to Tundra

he arctic fox (*Vulpes lagopus*) is a predator native to arctic regions of North America, Europe, and Asia (Figure 42.1). Valued for its fur, it was introduced onto hundreds of islands between Alaska and Russia a century ago in an effort to establish populations that could be easily harvested. The introduction had a surprising effect—it transformed many habitats on the islands from grassland to tundra.

How did this remarkable change come about? The foxes fed on seabirds, decreasing their density almost 100-fold compared to that on fox-free islands. Fewer seabirds meant less bird guano, the primary source of nutrients for plants on the islands. The reduction in nutrient availability in turn favored slower-growing forbs and shrubs typical of tundra instead of grasses and sedges, which require more nutrients. To test this explanation, researchers added fertilizer to plots of tundra on one of the fox-infested islands in 2001. Three years later, the fertilized plots had turned back into grassland.

Each of these islands and the community of organisms on it make up an **ecosystem**, the sum of all the organisms living in a given area and the abiotic factors with which they interact. An ecosystem can encompass a large area, such as a lake, forest, or island, or a microcosm, such as a small desert spring or the space under a fallen log **(Figure 42.2)**. As with populations and communities, the boundaries of ecosystems are not always discrete. Many ecologists view the entire biosphere as a global ecosystem, a composite of all the local ecosystems on Earth.

Regardless of an ecosystem's size, two key ecosystem processes cannot be fully described by population or community phenomena: energy flow and chemical cycling. Energy enters most ecosystems as sunlight. It is converted to chemical energy by autotrophs, passed to heterotrophs in the organic compounds of food, and dissipated as heat. Chemical elements, such as carbon and nitrogen, are cycled among abiotic and biotic components of the ecosystem. Photosynthetic and chemosynthetic organisms take up these elements in inorganic form from the air, soil, and water and incorporate them into

▲ Figure 42.2 A desert spring ecosystem.

their biomass, some of which is consumed by animals. The elements are returned in inorganic form to the environment by the metabolism of plants and animals, and by bacteria and fungi that break down organic wastes and dead organisms.

Both energy and chemical elements are transformed in ecosystems through photosynthesis and feeding relationships. But unlike chemicals, energy cannot be recycled. An ecosystem must be powered by a continuous influx of energy from an external source—in most cases, the sun. As we'll see, energy flows through ecosystems, whereas chemicals cycle within them.

Resources critical to human survival and welfare—from the food we eat to the oxygen we breathe—are products of ecosystem processes. In this chapter, we'll explore the dynamics of energy flow and chemical cycling, emphasizing the results of ecosystem experiments. We'll also consider how human activities have affected energy flow and chemical cycling. Finally, we'll examine the science of restoration ecology, which focuses on returning degraded ecosystems to a more natural state.

CONCEPT 42.1

Physical laws govern energy flow and chemical cycling in ecosystems

Cells transform energy and matter, subject to the laws of thermodynamics (see Concept 6.1). Cell biologists study these transformations within organelles and cells and measure the amounts of energy and matter that cross the cell's boundaries. Ecosystem ecologists do the same thing, except in their case the "cell" is a complete ecosystem. By studying how populations change in size and by grouping the species in a community into trophic levels of feeding relationships (see Concept 41.2), ecologists can follow the transformations of energy in an ecosystem and map the movements of chemical elements.

Conservation of Energy

Because ecosystem ecologists study the interactions of organisms with the physical environment, many ecosystem

approaches are based on laws of physics and chemistry. The first law of thermodynamics states that energy cannot be created or destroyed but only transferred or transformed (see Concept 6.1). Plants and other photosynthetic organisms convert solar energy to chemical energy, but the total amount of energy does not change: The energy stored in organic molecules must equal the total solar energy intercepted by the plant minus the amounts reflected and dissipated as heat. Ecosystem ecologists measure transfers within and across ecosystems to understand how many organisms a habitat can support and the amount of food humans can harvest from a site.

One implication of the second law of thermodynamics, which states that every exchange of energy increases the entropy of the universe, is that energy conversions are inefficient. Some energy is always lost as heat. As a result, each unit of energy that enters an ecosystem eventually exits as heat. Thus, energy flows through ecosystems—it does not cycle within them for long periods of time. Because energy flowing through ecosystems is ultimately lost as heat, most ecosystems would vanish if the sun were not continuously providing energy to Earth.

Conservation of Mass

Matter, like energy, cannot be created or destroyed. This **law of conservation of mass** is as important for ecosystems as are the laws of thermodynamics. Because mass is conserved, we can determine how much of a chemical element cycles within an ecosystem or is gained or lost by that ecosystem over time.

Unlike energy, chemical elements are continually recycled within ecosystems. For example, a carbon atom in CO_2 is released from the soil by a decomposer, taken up by a blade of grass through photosynthesis, consumed by a grazing animal, and returned to the soil in the animal's waste. This process of chemical cycling is a key feature of how ecosystems work.

Although few elements are gained or lost from Earth, they can be gained by or lost from a particular ecosystem. In a forest, most mineral nutrients—the essential elements that plants obtain from soil—typically enter as dust or as solutes dissolved in rainwater or leached from rocks in the ground. Nitrogen is also supplied through the biological process of nitrogen fixation (see Figure 29.12). In terms of losses, some elements return to the atmosphere as gases, and others are carried out of the ecosystem by moving water or by wind. Like organisms, ecosystems are open systems, absorbing energy and mass and releasing heat and waste products.

In nature, most gains and losses to ecosystems are small compared to the amounts recycled within them. Still, the balance between inputs and outputs determines whether an ecosystem is a source or a sink for a given element. If a mineral nutrient's outputs exceed its inputs, it will eventually limit production in that system. Human activities often change the balance of inputs and outputs considerably, as we'll see later in this chapter and in Chapter 43.

Energy, Mass, and Trophic Levels

Ecologists group species into trophic levels based on their main source of nutrition and energy (see Concept 41.2). The trophic level that ultimately supports all others consists of autotrophs, also called the primary producers of the ecosystem. Most autotrophs are photosynthetic organisms that use light energy to synthesize sugars and other organic compounds, which they use as fuel for cellular respiration and as building material for growth. The most common autotrophs are plants, algae, and photosynthetic prokaryotes, although chemosynthetic prokaryotes are the primary producers in ecosystems such as deep-sea hydrothermal vents (see Figure 40.11) and places deep underground or beneath ice.

Organisms in trophic levels above the primary producers are heterotrophs, which depend directly or indirectly on the primary producers for their source of energy. Herbivores, which eat plants and other primary producers, are **primary consumers**. Carnivores

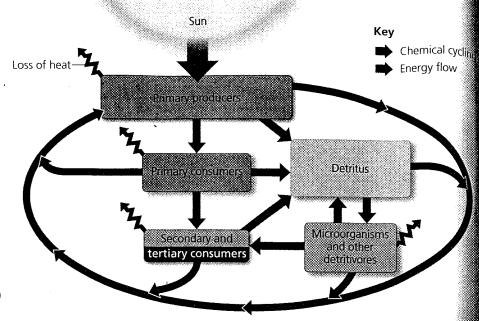
that eat herbivores are **secondary consumers**, and carnivores that eat other carnivores are **tertiary consumers**.

Another group of heterotrophs is the **detritivores**, or **decomposers**, terms used synonymously in this text to refer to consumers that get their energy from detritus. **Detritus** is nonliving organic material, such as the remains of dead organisms, feces, fallen leaves, and wood. Although some animals (such as earthworms) feed on detritus, the most important detritivores are prokaryotes and fungi **(Figure 42.3)**. These organisms secrete enzymes that digest organic material; they

products. Many detritivores are in turn eaten by secondary and tertiary consumers.

then absorb the breakdown

In a forest, for instance, birds eat earthworms that have been feeding on leaf litter and its associated prokaryotes and fungi. As a result, chemicals origi-


detritivores to birds.

Detritivores also play a critical role in recycling chemical elements to primary producers. Detritivores convert organic matter from all trophic levels to inorganic compounds usable by primary producers. When the detritivores excrete waste products or die, those inorganic compounds are returned

nally synthesized by plants pass from plants to leaf litter to

▲ Figure 42.3 Fungi

decomposing a dead tree.

▲ Figure 42.4 An overview of energy and nutrient dynamics in an ecosystem. Energy enters, flows through, and exits an ecosystem, whereas chemical nutrients cycle within it. Energy (dark orange arrows) entering from the sun as radiation is transferred as chemical energy through the food web; each of these units of energy ultimately exits as heat radiated into space. Most transfers of nutrients (blue arrows) through the food web lead eventually to detritus; the nutrients then cycle back to the primary producers.

to the soil. Producers can then recycle these elements into organic compounds. If decomposition stopped, life as we know it would cease as detritus piled up and the supply of ingredients needed to synthesize organic matter was exhausted. **Figure 42.4** summarizes the trophic relationships in an ecosystem.

CONCEPT CHECK 42.1

- **1.** Why is the transfer of energy in an ecosystem referred to as energy flow, not energy cycling?
- 2. WHAT IF? You are studying nitrogen cycling on the Serengeli Plain in Africa. During your experiment, a herd of migrating wildebeests grazes through your study plot. What would you need to know to measure their effect on nitrogen balance in the plot?
- 3. MAKE CONNECTIONS Use the second law of thermodynamics to explain why an ecosystem's energy supply must be continually replenished. (See Concept 6.1.)

For suggested answers, see Appendix A.

Tot suggested answers, see Appendix A

CONCEPT 42.2

Energy and other limiting factors control primary production in ecosystems

The theme of energy transfer underlies all biological interactions (see Concept 1.1). In most ecosystems, the amount of light energy converted to chemical energy—in the form

of organic compounds—by autotrophs during a given time period is the ecosystem's **primary production**. These photosynthetic products are the starting point for most studies of ecosystem metabolism and energy flow. In ecosystems where the primary producers are chemoautotrophs, the initial energy input is chemical, and the initial products are the organic compounds synthesized by the microorganisms.

Ecosystem Energy Budgets

In most ecosystems, primary producers use light energy to synthesize energy-rich organic molecules, and consumers acquire their organic fuels secondhand (or even third- or fourthhand) through food webs (see Figure 41.14). Therefore, the total amount of photosynthetic production sets the spending limit for the entire ecosystem's energy budget.

The Global Energy Budget

Each day, Earth's atmosphere is bombarded by a total of about 10^{22} joules of solar radiation (1 J = 0.239 cal). This is enough energy to supply the demands of the entire human population for 19 years at 2013 energy consumption levels. The intensity of the solar energy striking Earth varies with latitude, with the tropics receiving the greatest input (see Figure 40.3). About 50% of incoming solar radiation is absorbed, scattered, or reflected by clouds and dust in the atmosphere. The amount of solar radiation that ultimately reaches Earth's surface limits the possible photosynthetic output of ecosystems.

Only a small fraction of the sunlight that reaches Earth's surface is actually used in photosynthesis. Much of the radiation strikes materials that don't photosynthesize, such as ice and soil. Of the radiation that does reach photosynthetic organisms, only certain wavelengths are absorbed by photosynthetic pigments (see Figure 8.9); the rest is transmitted, reflected, or lost as heat. As a result, only about 1% of the visible light that strikes photosynthetic organisms is converted to chemical energy. Nevertheless, Earth's primary producers create about 150 billion metric tons $(1.50 \times 10^{14} \, \text{kg})$ of organic material each year.

Gross and Net Production

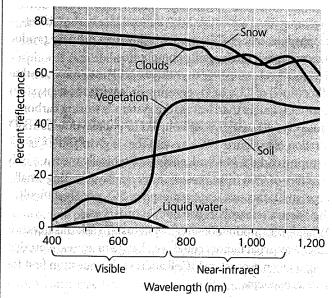
Total primary production in an ecosystem is known as that ecosystem's **gross primary production (GPP)**—the amount of energy from light (or chemicals, in chemoautotrophic systems) converted to the chemical energy of organic molecules per unit time. Not all of this production is stored as organic material in the primary producers because they use some of the molecules as fuel in their own cellular respiration. **Net Primary production (NPP)** is equal to gross primary production minus the energy used by the primary producers for their "autotrophic respiration" (R_a):

$$NPP = GPP - R_a$$

On average, NPP is about one-half of GPP. To ecologists, NPP is the key measurement because it represents the storage of

chemical energy that will be available to consumers in the ecosystem.

Net primary production can be expressed as energy per unit area per unit time $[J/(m^2 \cdot yr)]$ or as biomass (mass of vegetation) added per unit area per unit time $[g/(m^2 \cdot yr)]$. (Note that biomass is usually expressed in terms of the dry mass of organic material.) An ecosystem's NPP should not be confused with the total biomass of photosynthetic autotrophs present, a measure called the *standing crop*. The net primary production is the amount of *new* biomass added in a given period of time. Although a forest has a large standing crop, its NPP may actually be less than that of some grasslands; grasslands do not accumulate as much biomass as forests because animals consume the plants rapidly and because grasses and herbs decompose more quickly than trees do.


Satellites provide a powerful tool for studying global patterns of primary production (**Figure 42.5**). Images produced from satellite data show that different ecosystems vary considerably in their NPP. Tropical rain forests are among the

▼ Figure 42.5 Research Method

Determining Primary Production with Satellites

Application Because chlorophyll captures visible light, photosynthetic organisms absorb more light at visible wavelengths (about 380–750 nm) than at near-infrared wavelengths (750–1,100 nm) (see Figure 8.6). Scientists use this difference in absorption to estimate the rate of photosynthesis in different regions of the globe using satellites.


Technique Most satellites determine what they "see" by comparing the ratios of wavelengths reflected back to them. Vegetation reflects much more near-infrared radiation than visible radiation, producing a reflectance pattern very different from that of snow, clouds, soil, and liquid water.

Results Scientists use the satellite data to help produce maps of primary production like the one in Figure 42.6.

► Figure 42.6 Global net primary production. This map is based on satellite-collected data, such as amount of sunlight absorbed by vegetation. Note that tropical land areas have the highest rates of production (yellow and red on the map).

Poes this map accurately reflect the importance of some highly productive habitats, such as wetlands, coral reefs, and coastal zones? Explain.

most productive terrestrial ecosystems and contribute a large portion of the planet's NPP. Estuaries and coral reefs also have very high NPP, but their contribution to the global total is smaller because these ecosystems cover only about one-tenth the area covered by tropical rain forests. In contrast, while the open oceans are relatively unproductive (Figure 42.6), their vast size means that together they contribute as much global NPP as terrestrial systems do.

Whereas NPP can be stated as the amount of new biomass added by producers in a given period of time, **net ecosystem production (NEP)** is a measure of the *total biomass accumulation* during that time. NEP is defined as gross primary production minus the total respiration of all organisms in the system (R_T) —not just primary producers as for the calculation of NPP, but decomposers and other heterotrophs as well:

$$NEP = GPP - R_T$$

NEP is useful to ecologists because its value determines whether an ecosystem is gaining or losing carbon over time. A forest may have a positive NPP but still lose carbon if heterotrophs release it as $\rm CO_2$ more quickly than primary producers incorporate it into organic compounds.

The most common way to estimate NEP is to measure the net flux (flow) of CO_2 or O_2 entering or leaving the ecosystem. If more CO_2 enters than leaves, the system is storing carbon. Because O_2 release is directly coupled to photosynthesis and respiration (see Figure 7.2), a system that is giving off O_2 is also storing carbon. On land, ecologists typically measure only the net flux of CO_2 from ecosystems because detecting small changes in O_2 flux in a large atmospheric O_2 pool is difficult. In the oceans, researchers use both approaches.

What limits production in ecosystems? To ask this question another way, what factors could we change to increase production for a given ecosystem? We'll address this question first for aquatic ecosystems.

Primary Production in Aquatic Ecosystems

In aquatic (marine and freshwater) ecosystems, both light and nutrients are important in controlling primary production.

Light Limitation

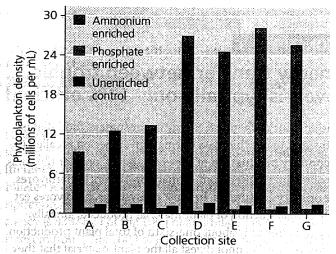
Because solar radiation drives photosynthesis, you would expect light to be a key variable in controlling primary production in oceans. Indeed, the depth of light penetration affects primary production throughout the photic zone of an ocean or lake (see Figure 40.10). About half of the solar radiation is absorbed in the first 15 m of water. Even in "clear" water, only 5–10% of the radiation may reach a depth of 75 m.

If light were the main variable limiting primary production in the ocean, you would expect production to increase along a gradient from the poles toward the equator, which receives the greatest intensity of light. However, you can see in Figure 42.6 that there is no such gradient. Another factor must strongly influence primary production in the ocean.

Nutrient Limitation

More than light, nutrients limit primary production in most oceans and lakes. A **limiting nutrient** is the element that must be added for production to increase. The nutrients that most often limit marine production are nitrogen and phosphorus. Concentrations of these nutrients are typically low in the photic zone because they are rapidly taken up by phytoplankton and because detritus tends to sink.

For example, as detailed in **Figure 42.7**, nutrient enrichment experiments found that nitrogen was limiting phytoplankton growth off the south shore of Long Island, New York One practical application of this work is in preventing algal "blooms" caused by excess nitrogen runoff that fertilizes the phytoplankton. Prior to this research, phosphate contamination was thought to cause many such blooms in the ocean, but eliminating phosphates alone may not help unless nitrogen pollution is also controlled.


The macronutrients nitrogen and phosphorus are not the only nutrients that limit aquatic production. Several large areas of the ocean have low phytoplankton densities despite relatively high nitrogen concentrations. The Sargasso Sea, a subtropical region of the Atlantic Ocean, has some of the clearest water in the world because of its low phytoplankton

▼ Figure 42.7 Inquiry

Which nutrient limits phytoplankton production along the coast of Long Island?

Experiment Pollution from duck farms concentrated near Moriches Bay adds both nitrogen and phosphorus to the coastal water off Long Island, New York. To determine which nutrient limits phytoplankton growth in this area, John Ryther and William Dunstan, of the Woods Hole Oceanographic Institution, cultured the phytoplankton *Nannochloris atomus* with water collected from several sites, identified as A through G. They added either ammonium (NH_4^+) or phosphate (PO_4^{3-}) to some of the cultures.

Results The addition of ammonium caused heavy phytoplankton growth in the cultures, but the addition of phosphate did not.

Conclusion The researchers concluded that nitrogen is the nutrient that limits phytoplankton growth in this ecosystem because adding phosphorus did not increase *Nannochloris* growth, whereas adding nitrogen increased phytoplankton density dramatically.

Data from J. H. Ryther and W. M. Dunstan, Nitrogen, phosphorus, and eutrophication in the coastal marine environment, *Science* 171:1008–1013 (1971).

WHAT IF? Predict how the results would change if water samples were drawn from areas where new duck farms had greatly increased the amount of pollution in the water. Explain.

density. Nutrient enrichment experiments have revealed that the availability of the micronutrient iron limits primary production there (**Table 42.1**). Windblown dust from land supplies most of the iron to the oceans but is relatively scarce in the Sargasso Sea and certain other regions compared to the oceans as a whole.

Areas of *upwelling*, where deep, nutrient-rich waters circulate to the ocean surface, have exceptionally high primary production. This fact supports the hypothesis that nutrient availability determines marine primary production. Because upwelling stimulates growth of the phytoplankton that form the base of marine food webs, upwelling areas typically host highly productive, diverse ecosystems and are prime fishing locations. The largest areas of upwelling occur in the Southern Ocean (also called the Antarctic Ocean), along the equator,

Table 42.1 Nutrient Enrichment Experiment for Sargasso Sea Samples

1	Added to ntal Culture	Relative Uptake of ¹⁴ C by Cultures*
None (con	trols)	1.00
Nitrogen (N) + phosphorus (P) only	1.10
N + P + m	etals, excluding iron (Fe)	1.08
N + P + m	etals, including Fe	12.90
N + P + Fe	2	12.00

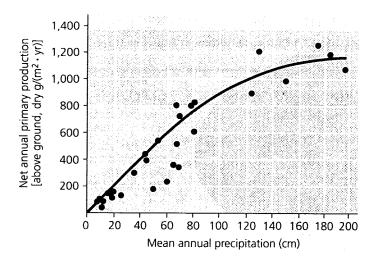
^{*14}C uptake by cultures measures primary production.

Data from D. W. Menzel and J. H. Ryther, Nutrients limiting the production of phytoplankton in the Sargasso Sea, with special reference to iron, *Deep Sea Research* 7:276–281 (1961).

INTERPRET THE DATA The element molybdenum (Mo) is another micronutrient that can limit primary production in the oceans. If the researchers found the following results for additions of Mo, what would you conclude about its relative importance for growth?

$$N + P + Mo$$
 6.0
 $N + P + Fe + Mo$ 72.0

and in the coastal waters off Peru, California, and parts of western Africa.


Nutrient limitation is also common in freshwater lakes. During the 1970s, scientists showed that sewage and fertilizer runoff from farms and lawns adds considerable nutrients to lakes, promoting the growth of primary producers. When the primary producers die, detritivores decompose them, depleting the water of much or all of its oxygen. The ecological impacts of this process, known as **eutrophication** (from the Greek *eutrophos*, well nourished), include the loss of many fish species from the lakes (see Figure 40.11).

To control eutrophication, scientists need to know which nutrient is responsible. While nitrogen rarely limits primary production in lakes, whole-lake experiments showed that phosphorus availability limited cyanobacterial growth. This and other ecological research led to the use of phosphate-free detergents and other water quality reforms.

Primary Production in Terrestrial Ecosystems

At regional and global scales, temperature and moisture are the main factors controlling primary production in terrestrial ecosystems. Tropical rain forests, with their warm, wet conditions that promote plant growth, are the most productive terrestrial ecosystems (see Figure 42.6). In contrast, low-productivity systems are generally hot and dry, like many deserts, or cold and dry, like arctic tundra. Between these extremes lie the temperate forest and grassland ecosystems, with moderate climates and intermediate productivity.

The climate variables of moisture and temperature are very useful for predicting NPP in terrestrial ecosystems. Primary production is greater in wetter ecosystems, as shown for the

▲ Figure 42.8 A global relationship between net primary production and mean annual precipitation for terrestrial ecosystems.

plot of NPP and annual precipitation in **Figure 42.8**. Along with mean annual precipitation, a second useful predictor is *evapotranspiration*, the total amount of water transpired by plants and evaporated from a landscape. Evapotranspiration increases with the temperature and amount of solar energy available to drive evaporation and transpiration.

Nutrient Limitations and Adaptations That Reduce Them

EVOLUTION Soil nutrients also limit primary production in terrestrial ecosystems. As in aquatic systems, nitrogen and phosphorus are the nutrients that most commonly limit terrestrial production. Globally, nitrogen limits plant growth most. Phosphorus limitations are common in older soils where phosphate molecules have been leached away by water, such as in many tropical ecosystems. Phosphorus availability is also often low in soils of deserts and other ecosystems with a basic pH, where some phosphorus precipitates and becomes unavailable to plants. Adding a nonlimiting nutrient, even one that is scarce, will not stimulate production. Conversely, adding more of the limiting nutrient will increase production until some other nutrient becomes limiting.

Various adaptations have evolved in plants that can increase their uptake of limiting nutrients. One important adaptation is the symbiosis between plant roots and nitrogen-fixing bacteria. Another is the mycorrhizal association between plant roots and fungi that supply phosphorus and other limiting elements to plants (see Concept 29.4). Plant roots also have hairs and other anatomical features that increase their surface area and, hence, the area of soil in contact with the roots (see Figure 28.4). Many plants release enzymes and other substances into the soil that increase the availability of limiting nutrients; such substances include phosphatases, which cleave a phosphate group from larger molecules, and certain molecules (called chelating agents) that make micronutrients such as iron more soluble in the soil.

Studies relating nutrients to terrestrial primary production have practical applications in agriculture. Farmers maximize their crop yields by using fertilizers with the right balance of nutrients for the local soil and type of crop. This knowledge of limiting nutrients helps feed billions of people.

CONCEPT CHECK 42.2

- 1. Why is only a small portion of the solar energy that strikes Earth's atmosphere stored by primary producers?
- 2. How can ecologists experimentally determine the factor that limits primary production in an ecosystem?
- 3. MAKE CONNECTIONS Explain how nitrogen and phosphorus the nutrients that most often limit primary production, are necessary for the Calvin cycle to function in photosynthesis (see Concept 8.3).

For suggested answers, see Appendix A.

CONCEPT 42.3

Energy transfer between trophic levels is typically only 10% efficient

The amount of chemical energy in consumers' food that is converted to new biomass during a given period is called the **secondary production** of the ecosystem. Consider the transfer of organic matter from primary producers to herbivores the primary consumers. In most ecosystems, herbivores eat only a small fraction of plant material produced; globally, they consume only about one-sixth of total plant production. Moreover, they cannot digest all the plant material that they do eat, as anyone who has walked through a field where cattle have been grazing will attest. Most of an ecosystem's production is eventually consumed by detritivores. Next, we'll look at how such processes affect the transfer of energy in ecosystems

Production Efficiency

We'll begin by examining secondary production in one organism—a caterpillar. When a caterpillar feeds on a leaf, only about 33 J out of 200 J, or one-sixth of the potential energy in the leaf, is used for secondary production, or growth (Figure 42.9). The caterpillar stores some of the remaining energy in organic compounds that will be used for cellular respiration and passes the rest in its feces. The energy in the feces remains in the ecosystem temporarily, but most of it is lost as heat after the feces are consumed by detritivores. The energy used for the caterpillar's respiration is also eventually lost from the ecosystem as heat. This is why energy is said to flow through, not cycle within ecosystems. Only the chemical energy stored by herbivores as biomass, through growth or the production of offspring, is available as food to secondary consumers.

We can measure the efficiency of animals as energy transformers using the following equation:

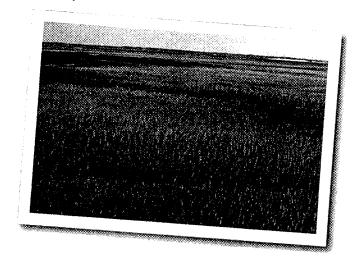
Production efficiency = $\frac{\text{Net secondary production} \times 100\%}{\text{Assimilation of primary production}}$

Net secondary production is the energy stored in biomass represented by growth and reproduction. Assimilation consists

▲ Figure 42.9 Energy partitioning within a link of the food chain.

INTERPRET THE DATA What percentage of the energy in the caterpillar's food is actually used for secondary production (growth)?

of the total amount of energy an organism has consumed and used for growth, reproduction, and respiration. **Production efficiency**, therefore, is the percentage of energy stored in assimilated food that is used for growth and reproduction, *not* respiration. For the caterpillar in Figure 42.9, production efficiency is 33%; 67 J of the 100 J of assimilated energy is used for respiration. (The 100 J of energy lost as undigested material in feces does not count toward assimilation.) Birds and mammals typically have low production efficiencies, in the range of 1–3%, because they use so much energy in maintaining a constant, high body temperature. Fishes, which are mainly ectothermic (see Concept 32.3), have production efficiencies around 10%. Insects and microorganisms are even more efficient, with production efficiencies averaging 40% or more.


Trophic Efficiency and Ecological Pyramids

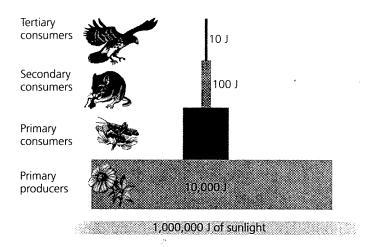
Let's scale up now from the production efficiencies of individual consumers to the flow of energy through trophic levels.

Trophic efficiency is the percentage of production transferred from one trophic level to the next. Trophic efficiencies must always be less than production efficiencies because they take into account not only the energy contained in feces and the energy lost through respiration, but also the energy converted to new biomass in a lower trophic level but not consumed by the next trophic level. Trophic efficiencies range from roughly 5% to 20% in different ecosystems, but on average are only about 10%. In other words, 90% of the energy available at one trophic level typically is not transferred to the next. This loss is multiplied over the length of a food chain. If 10% of available energy is transferred from primary producers to primary consumers, such as caterpillars, and 10% of that energy is transferred to secondary consumers (carnivores), then only 1% of net primary production is available to secondary consumers (10% of 10%). In the Scientific Skills Exercise, you

Interpreting Quantitative Data in a Table

How Efficient Is Energy Transfer in a Salt Marsh Ecosystem? In a classic experiment, John Teal studied the flow of energy through the producers, consumers, and detritivores in a salt marsh. In this exercise, you will use the data from this study to calculate some measures of energy transfer between trophic levels in this ecosystem.

How the Study Was Done Teal measured the amount of solar radiation entering a salt marsh in Georgia over a year. He also measured the aboveground biomass of the dominant primary producers, which were grasses, as well as the biomass of the dominant consumers, including insects, spiders, and crabs, and of the detritus that flowed out of the marsh to the surrounding coastal waters. To determine the amount of energy in each unit of biomass, he dried the biomass, burned it in a calorimeter, and measured the amount of heat produced.


Data from the Study

Form of Energy	kcal/(m²·yr)		
Solar radiation	600,000		
Gross grass production	34,580		
Net grass production	6,585		
Gross insect production	305		
Net insect production	81		
Detritus leaving marsh	3,671		
Data from 1 M. Teal Energy flow in the salt marsh ecosystem of Georgia			

Data from J. M. Teal, Energy flow in the salt marsh ecosystem of Georgia *Ecology* 43:614–624 (1962).

INTERPRET THE DATA

- What proportion of the solar energy that reaches the marsh is incorporated into gross primary production? Into net primary production? (A proportion is the same as a percentage divided by 100. Both measures are useful for comparing relative efficiencies across different ecosystems.)
- 2. How much energy is lost by primary producers as respiration in this ecosystem? How much is lost as respiration by the insect population?
- 3. If all of the detritus leaving the marsh is plant material, what proportion of all net primary production leaves the marsh as detritus each year?
- (MB) A version of this Scientific Skills Exercise can be assigned in MasteringBiology.

▲ Figure 42.10 An idealized pyramid of energy. This example assumes a trophic efficiency of 10% for each link in the food chain. Notice that primary producers convert only about 1% of the energy available to them to net primary production.

can calculate trophic efficiency and other measures of energy flow in a salt marsh ecosystem.

The progressive loss of energy along a food chain limits the abundance of top-level carnivores that an ecosystem can support. Only about 0.1% of the chemical energy fixed by photosynthesis can flow all the way through a food web to a tertiary consumer, such as a snake or a shark. This explains why most food webs include only about four or five trophic levels (see Concept 41.2).

The loss of energy with each transfer in a food chain can be represented by an *energy pyramid*, in which the net productions of different trophic levels are arranged in tiers (**Figure 42.10**). The width of each tier is proportional to the net production, expressed in joules, of each trophic level. The highest level, which represents top-level predators, contains relatively few individuals. The small population size typical of top predator species is one reason they tend to be vulnerable to extinction (and to the evolutionary consequences of small population size, discussed in Concept 21.3).

One important ecological consequence of low trophic efficiencies is represented in a *biomass pyramid*, in which each tier represents the standing crop (the total dry mass of all organisms) in one trophic level. Most biomass pyramids narrow sharply from primary producers at the base to top-level carnivores at the apex because energy transfers between trophic levels are so inefficient (Figure 42.11a). Certain aquatic ecosystems, however, have inverted biomass pyramids: Primary consumers outweigh the producers (Figure 42.11b).

Such inverted biomass pyramids occur because the producers—phytoplankton—grow, reproduce, and are consumed so quickly by the zooplankton that their total biomass remains at comparatively low levels. However, because the phytoplankton continually replace their biomass at such a rapid rate, they can support a biomass of zooplankton bigger than

-446

Trophic level		Dry mass (g/m²)			
Tertiary consumers Secondary consumers Primary consumers Primary producers		15 11 37 809			
(a) Most biomass pyramids show a sharp decrease in biomass at successively higher trophic levels, as illustrated by data from a Florida bog.					
 Trophic level	Dry mass (g/m²)				
Primary consumers (zoo Primary producers (phyto	` <u> </u>	21 4			
(b) In some aquatic ecosystems, such as the English Channel, a small standing crop of primary producers (phytoplankton) supports a larger standing crop of primary consumers (zooplankton).					

▲ Figure 42.11 Pyramids of biomass. Numbers denote the dry mass of all organisms at each trophic level.

their own biomass. Likewise, because phytoplankton reproduce so quickly and have much higher production than zooplankton, the pyramid of *energy* for this ecosystem is still bottom-heavy, like the one in Figure 42.10.

The dynamics of energy flow through ecosystems have important implications for human consumers. Eating meat is a relatively inefficient way of tapping photosynthetic production. The same pound of soybeans that a person could eat for

▲ Phytoplankton and zooplankton

protein produces only a fifth of a pound of beef or less when fed to a cow. Worldwide agriculture could, in fact, feed many more people and require less land if we all fed more efficiently—as primary consumers, eating plant material.

CONCEPT CHECK 42.3

- 1. If an insect that eats plant seeds containing 100 J of energy uses 30 J of that energy for respiration and excretes 50 J in its feces, what is the insect's net secondary production? What is its production efficiency?
- 2. Tobacco leaves contain nicotine, a poisonous compound that is energetically expensive for the plant to make. What advantage might the plant gain by using some of its resources to produce nicotine?
- 3. WHAT IF? Detritivores are consumers that obtain their energy from detritus. How many joules of energy are potentially available to detritivores in the ecosystem represented in Figure 42.10? For suggested answers, see Appendix A.

CONCEPT 42.4

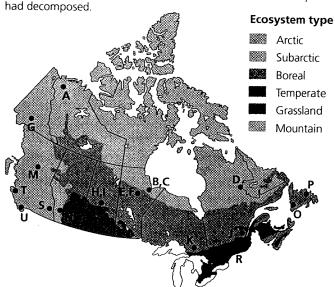
Biological and geochemical processes cycle nutrients and water in ecosystems

Although most ecosystems receive abundant solar energy, chemical elements are available only in limited amounts. Life therefore depends on the recycling of essential chemical elements. Much of an organism's chemical stock is replaced continuously as nutrients are assimilated and waste products are released. When the organism dies, the atoms in its body are returned to the atmosphere, water, or soil by decomposers. Decomposition replenishes the pools of inorganic nutrients that plants and other autotrophs use to build new organic matter.

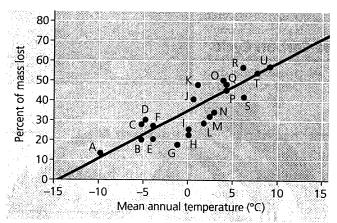
Decomposition and Nutrient Cycling Rates

Decomposers are heterotrophs that get their energy from detritus. Their growth is controlled by the same factors that limit primary production in ecosystems, including temperature, moisture, and nutrient availability. Decomposers usually grow faster and decompose material more quickly in warmer ecosystems (Figure 42.12). In tropical rain forests, most organic material decomposes in a few months to a few years, whereas in temperate forests, decomposition takes four to six years, on average. The difference is largely the result of the higher temperatures and more abundant precipitation in tropical rain forests.

Because decomposition in a tropical rain forest is rapid, relatively little organic material accumulates as leaf litter on the forest floor; about 75% of the ecosystem's nutrients is present in the woody trunks of trees, and only about 10% is contained in the soil. Thus, the relatively low concentrations of some nutrients in the soil of tropical rain forests result from a short cycling time, not from a lack of these elements in the ecosystem. In temperate forests, where decomposition is much slower, the soil may contain as much as 50% of all the organic material in the ecosystem. The nutrients that are present in temperate forest detritus and soil may remain there for years before plants assimilate them.


Decomposition on land is also slower when conditions are either too dry for decomposers to thrive or too wet to supply them with enough oxygen. Ecosystems that are both cold and wet, such as peatlands, store large amounts of organic matter. Decomposers grow poorly there, and net primary production greatly exceeds the rate of decomposition.

In aquatic ecosystems, decomposition in anaerobic muds can take 50 years or longer. Bottom sediments are comparable to the detritus layer in terrestrial ecosystems, but algae and aquatic plants usually assimilate nutrients directly from the water. Thus, the sediments often constitute a nutrient sink, and aquatic ecosystems are very productive only when there is exchange between the bottom layers of water and surface waters (as occurs in the upwelling regions described earlier).


▼ Figure 42.12 Inquiry

How does temperature affect litter decomposition in an ecosystem?

Experiment Researchers with the Canadian Forest Service placed identical samples of organic material—litter—on the ground in 21 sites across Canada (marked by letters on the map below). Three years later, they returned to see how much of each sample

Results The mass of litter in the warmest ecosystem decreased four times faster than in the coldest ecosystem.

Conclusion Decomposition rate increases with temperature across much of Canada.

Data from T. R. Moore et al., Litter decomposition rates in Canadian forests, *Global Change Biology* 5:75–82 (1999).

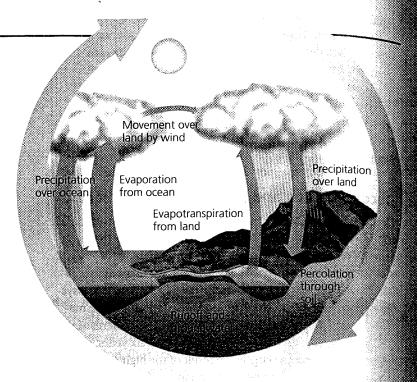
WHAT IF? What other factors might have varied across these sites? How might this variation have affected the interpretation of the data?

Biogeochemical Cycles

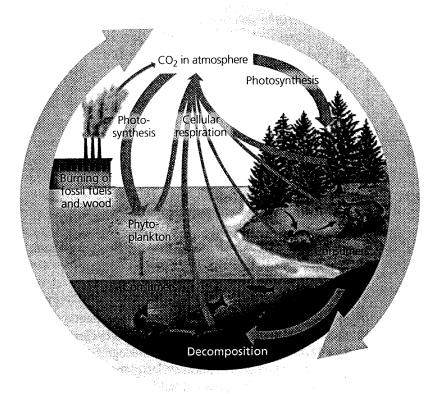
Because nutrient cycles involve both biotic and abiotic components, they are called **biogeochemical cycles** (Figure 42.13). For convenience, we can recognize two general categories of biogeochemical cycles: global and local. Gaseous forms of carbon, oxygen, sulfur, and nitrogen occur in the atmosphere, and cycles of these elements are essentially

▼ Figure 42.13 Exploring Water and Nutrient Cycling

Examine each cycle closely, considering the major reservoirs of water, carbon, nitrogen, and phosphorus and the processes that drive each cycle. The widths of the arrows in the diagrams approximately reflect the relative contribution of each process to the movement of water or a nutrient in the biosphere.


The Water Cycle

Biological importance Water is essential to all organisms, and its availability influences the rates of ecosystem processes, particularly primary production and decomposition in terrestrial ecosystems.


Forms available to life All organisms are capable of exchanging water directly with their environment. Liquid water is the primary physical phase in which water is used, though some organisms can harvest water vapor. Freezing of soil water can limit water availability to terrestrial plants.

Reservoirs The oceans contain 97% of the water in the biosphere. Approximately 2% is bound in glaciers and polar ice caps, and the remaining 1% is in lakes, rivers, and groundwater, with a negligible amount in the atmosphere.

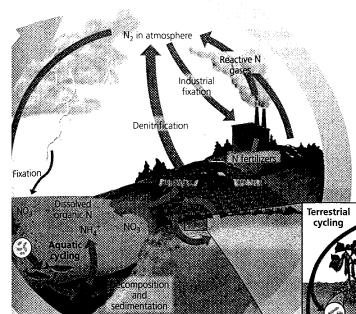
Key processes The main processes driving the water cycle are evaporation of liquid water by solar energy, condensation of water vapor into clouds, and precipitation. Transpiration by terrestrial plants also moves large volumes of water into the atmosphere. Surface and groundwater flow can return water to the oceans, completing the water cycle.

The Carbon Cycle

Biological importance Carbon forms the framework of the organic molecules essential to all organisms.

Forms available to life Photosynthetic organisms utilize CO_2 during photosynthesis and convert the carbon to organic forms that are used by consumers, including animals, fungiand heterotrophic protists and prokaryotes.

Reservoirs The major reservoirs of carbon include fossil fuels, soils, the sediments of aquatic ecosystems, the oceans (dissolved carbon compounds), plant and animal biomass, and the atmosphere (CO₂). The largest reservoir is sedimentary rocks such as limestone; however, carbon remains in this pool for long periods of time. All organisms are capable of returning carbon directly to their environment in its original form (CO₂) through respiration.


Key processes Photosynthesis by plants and phytoplankton removes substantial amounts of atmospheric CO₂ each year. This quantity is approximately equaled by CO₂ added to the atmosphere through cellular respiration by producers and consumers. The burning of fossil fuels and wood is adding significant amounts of additional CO₂ to the atmosphere. Over geologic time, volcanoes are also a substantial source of CO₂

Visit the Study Area in **MasteringBiology** for the BioFlix® 3-D Animation on The Carbon Cycle.

Nitrogen Cycle

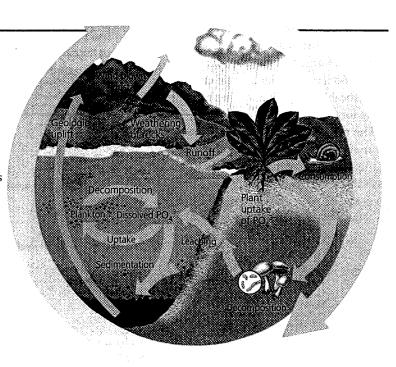
ngical importance Nitrogen is part of amino acids, proteins, nucleic acids and is often a limiting plant nutrient.

Forms available to life Plants can assimilate (use) two inorganic forms of nitrogen—ammonium (NH_4^+) and nitrate (NO_3^-) —and some organic forms, such as amino acids. Various bacteria can use all of these forms as well as nitrite (NO_2^-) . Animals can use only organic forms of nitrogen.

Reservoirs The main reservoir of nitrogen is the atmosphere, which is 80% free nitrogen gas (N_2) . The other reservoirs of inorganic and organic nitrogen compounds are soils and the sediments of lakes, rivers, and oceans; surface water and groundwater; and the biomass of living organisms.

Key processes The major pathway for nitrogen to enter an ecosystem is via *nitrogen fixation*, the conversion of N_2 to forms that can be used to synthesize organic nitrogen compounds. Certain bacteria, as well as lightning and volcanic activity, fix nitrogen naturally. Nitrogen inputs from human activities now outpace natural inputs on land. Two major contributors are industrially produced fertilizers and

legume crops that fix nitrogen via bacteria in their root nodules. Other bacteria in soil convert nitrogen to different forms. Examples include nitrifying bacteria, which convert ammonium to nitrate, and denitrifying bacteria, which convert nitrate to nitrogen gas. Human activities also release large quantities of reactive nitrogen gases, such as nitrogen oxides, to the atmosphere.


Phosphorus Cycle

regical importance Organisms require phosphorus as a reconstituent of nucleic acids, phospholipids, and ATP and energy-storing molecules and as a mineral constituent of and teeth.

Is available to life The most biologically important anic form of phosphorus is phosphate (PO₄³⁻), which plants b and use in the synthesis of organic compounds.

rvoirs The largest accumulations of phosphorus are in lentary rocks of marine origin. There are also large quantities osphorus in soil, in the oceans (in dissolved form), and in usms. Because soil particles bind PO₄³⁻, the recycling of phorus tends to be quite localized in ecosystems.

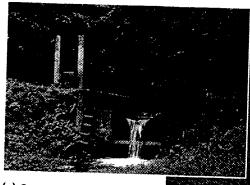
Processes Weathering of rocks gradually adds PO₄³- to ome leaches into groundwater and surface water and eventually reach the sea. Phosphate taken up by producers accorporated into biological molecules may be eaten by amers. Phosphate is returned to soil or water by either apposition of biomass or excretion by consumers. Because are no significant phosphorus-containing gases, only vely small amounts of phosphorus move through the sphere, usually in the forms of dust and sea spray.

global. Other elements, including phosphorus, potassium, and calcium, are too heavy to occur as gases at Earth's surface. They cycle locally in terrestrial ecosystems and more broadly in aquatic ecosystems.

Figure 42.13 provides a detailed look at the cycling of water, carbon, nitrogen, and phosphorus. When you study each cycle, consider which steps are driven primarily by biological processes. For the carbon cycle, for instance, plants, animals, and other organisms control most of the key steps, including photosynthesis and decomposition. For the water cycle, however, purely physical processes control many key steps, such as evaporation from the oceans.

How have ecologists worked out the details of chemical cycling in various ecosystems? One common method is to follow the movement of naturally occurring, nonradioactive isotopes through the biotic and abiotic components of an ecosystem. Another method involves adding tiny amounts of radioactive

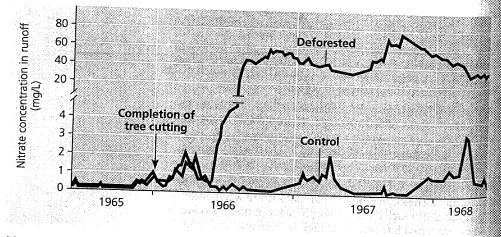
isotopes of specific elements and tracing their progress. Scientists have also been able to make use of the radioactive carbon (¹⁴C) released into the atmosphere during atom bomb testing in the 1950s and early 1960s. This "spike" of ¹⁴C can reveal where and how quickly carbon flows into ecosystem components, including plants, soils, and ocean water.


Case Study: Nutrient Cycling in the Hubbard Brook Experimental Forest

Since 1963, ecologist Gene Likens and colleagues have been studying nutrient cycling at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire. Their research site is a deciduous forest that grows in six small valleys, each drained by a single creek. Impermeable bedrock underlies the soil of the forest.

The research team first determined the mineral budget for each of six valleys by measuring the input and outflow of several key nutrients. They collected rainfall at several sites to measure the amount of water and dissolved minerals added to the ecosystem. To monitor the loss of water and minerals, they constructed a small concrete dam with a V-shaped spillway across the creek at the bottom of each valley (Figure 42.14a). They found that about 60% of the water added to the ecosystem as rainfall and snow exits through the stream, and the remaining 40% is lost by evapotranspiration.

Preliminary studies confirmed that internal cycling conserved most of the mineral nutrients in the system. For example, only about 0.3% more calcium (Ca^{2+}) leaves a valley v_{ia} its creek than is added by rainwater, and this small net loss is probably replaced by chemical decomposition of the bedrock During most years, the forest even registers small net gains of a few mineral nutrients, including nitrogen.


Experimental deforestation of a watershed dramatically increased the flow of water and minerals leaving the watershed (Figure 42.14b). Over three years, water runoff from the newly deforested watershed was 30–40% greater than in a control watershed, apparently because there were no plants to absorb and transpire water from the soil. Most remarkable was the loss of nitrate, whose concentration in the creek increased 60-fold, reaching levels considered unsafe for drinking water (Figure 42.14c). The Hubbard Brook deforestation study showed that the amount of nutrients leaving an intact forest

(a) Concrete dams and weirs built across streams at the bottom of watersheds enabled researchers to monitor the outflow of water and nutrients from the ecosystem.

(b) One watershed was clear-cut to study the effects of the loss of vegetation on drainage and nutrient cycling. All of the original plant material was left in place to decompose.

(c) The concentration of nitrate in runoff from the deforested watershed was 60 times greater than in a control (unlogged) watershed.

▲ Figure 42.14 Nutrient cycling in the Hubbard Brook Experimental Forest: an example of long-term ecological research.

(MB) A related Experimental Inquiry Tutorial can be assigned in MasteringBiology.

ecosystem is controlled mainly by the plants. Retaining nutrients in an ecosystem helps to maintain the productivity of the system, as well as to avoid algal "blooms" and other problems caused by excess nutrient runoff (see Figure 42.7).

CONCEPT CHECK 42.4

- 1. **DRAWIT** For each of the four biogeochemical cycles in Figure 42.13, draw a simple diagram that shows one possible path for an atom of that chemical from abiotic to biotic reservoirs and back.
- 2. Why does deforestation of a watershed increase the concentration of nitrates in streams draining the watershed?
- 3. WHAT IF? Why is nutrient availability in a tropical rain forest particularly vulnerable to logging?

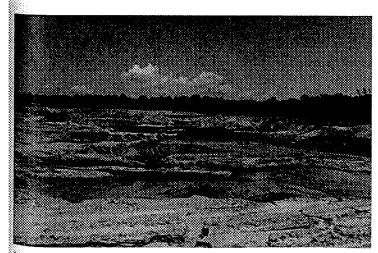
For suggested answers, see Appendix A.

CONCEPT 42.5

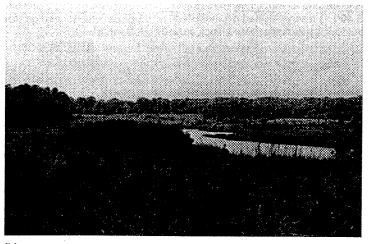
Restoration ecologists return degraded ecosystems to a more natural state

Ecosystems can recover naturally from most disturbances (including the experimental deforestation at Hubbard Brook) through the stages of ecological succession (see Concept 41.3). Sometimes that recovery takes centuries, though, particularly when humans have degraded the environment. Tropical areas that are cleared for farming may quickly become unproductive because of nutrient losses. Mining activities may last for several decades, and the lands are often abandoned in a degraded state. Ecosystems can also be damaged by salts that build up in soils from irrigation and by toxic chemicals or oil spills. Biologists increasingly are called on to help restore and repair damaged ecosystems.

Restoration ecologists seek to initiate or speed up the recovery of degraded ecosystems. One of the basic assumptions is that environmental damage is at least partly reversible. This optimistic view must be balanced by a second assumption—that ecosystems are not infinitely resilient. Restoration ecologists therefore work to identify and manipulate the processes that most limit recovery of ecosystems from disturbances. Where disturbance is so severe that restoring all of a habitat is impractical, ecologists try to reclaim as much of a habitat or ecological process as possible, within the limits of the time and money available to them.


In extreme cases, the physical structure of an ecosystem may need to be restored before biological restoration can occur. If a stream was straightened to channel water quickly through a suburb, ecologists may reconstruct a meandering channel to slow down the flow of water eroding the stream bank. To restore an open-pit mine, engineers may first grade the site with heavy equipment to reestablish a gentle slope, spreading topsoil when the slope is in place **(Figure 42.15)**.

Once physical reconstruction of the ecosystem is complete—or when it is not needed—biological restoration is the next step. The long-term objective of restoration is to return an ecosystem as much as possible to its predisturbance state. **Figure 42.16** explores four ambitious and successful restoration projects.


There are many such projects throughout the world, and they often employ two key strategies: bioremediation and biological augmentation.

Bioremediation

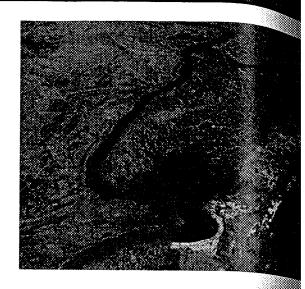
Using organisms—usually prokaryotes, fungi, or plants—to detoxify polluted ecosystems is known as **bioremediation**. Some plants and lichens adapted to soils containing heavy metals can accumulate high concentrations of toxic metals such as lead and cadmium in their tissues. Restoration ecologists can introduce such species to sites polluted by mining and other human activities and then harvest these organisms to remove

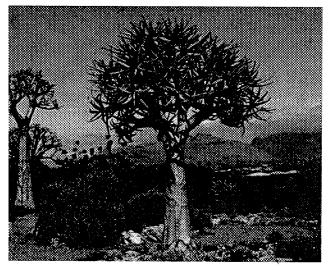
(a) In 1991, before restoration

(b) In 2000, near the completion of restoration

Figure 42.15 A gravel and clay mine site in New Jersey before and after restoration.

899


▼ Figure 42.16 Exploring Restoration Ecology Worldwide

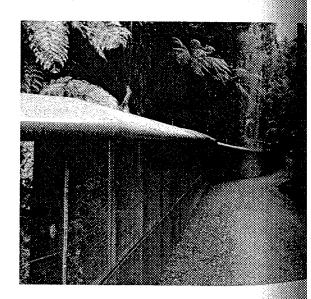

The examples highlighted on this page are just a few of the many restoration ecology projects taking place around the world.

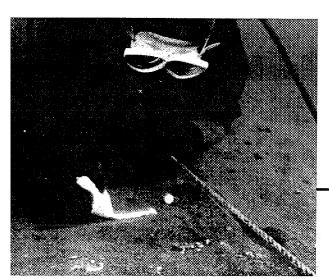
Kissimmee River, Florida

In the 1960s, the Kissimmee River was converted from a meandering river to a 90-km canal to control flooding. This channelization diverted water from the floodplain, causing the wetlands to dry up, threatening many fish and wetland bird populations. Kissimmee River restoration has filled 12 km of drainage canal and reestablished 24 km of the original

167 km of natural river channel. Pictured here is a section of the Kissimmee canal that has been plugged (wide, light strip on the right side of the photo), diverting flow into remnant river channels (center of the photo). The project will also restore natural flow patterns, which will foster self-sustaining populations of wetland birds and fishes.

Succulent Karoo, South Africa


In the Succulent Karoo desert region of southern Africa, as in many arid regions, overgrazing by livestock has damaged vast areas. Private landowners and government agencies in South Africa are restoring large areas of this unique region, revegetating the land and


employing more sustainable resource management. The photo shows a small sample of the exceptional plant diversity of the Succulent Karoo; its 5,000 plant species include the highest diversity of succulent plants in the world.

Maungatautari, New Zealand

Weasels, rats, pigs, and other introduced species pose a serious threat to New Zealand's native plants and animals, including kiwis, a group of flightless, ground-dwelling bird species. The goal of the Maungatautari restoration project is to exclude all exotic mammals from a 3,400-ha reserve located on a forested volcanic cone. A specialized fence around

the reserve eliminates the need to continue setting traps and using poisons that can harm native wildlife. In 2006, a pair of critically endangered takahe (a species of flightless rail) were released into the reserve with the hope of reestablishing a breeding population of this colorful bird on New Zealand's North Island.

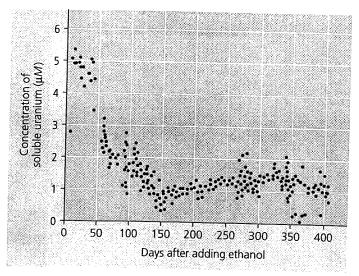
Coastal Japan

Seaweed and seagrass beds are important nursery grounds for a wide variety of fishes and shellfish. Once extensive but now reduced by development, these beds are being restored in the coastal areas of Japan. Techniques include constructing suitable seafloor habitat, transplanting seaweeds and seagrasses from natural beds using artificial substrates, and hand seeding (shown in this photograph).

the metals from the ecosystem. For instance, researchers in the United Kingdom have discovered a lichen species that grows on soil polluted with uranium dust left over from mining. The lichen concentrates uranium in a dark pigment, making it useful as a biological monitor and potentially as a remediator.

Ecologists already use the abilities of many prokaryotes to carry out bioremediation of soils and water. Scientists have sequenced the genomes of at least ten prokaryotic species specifically for their bioremediation potential. One of the species, the bacterium *Shewanella oneidensis*, appears particularly promising. It can metabolize a dozen or more elements under aerobic and anaerobic conditions. In doing so, it converts soluble forms of uranium, chromium, and nitrogen to insoluble forms that are less likely to leach into streams or groundwater. Researchers at Oak Ridge National Laboratory, in Tennessee, stimulated the growth of *Shewanella* and other uranium-reducing bacteria by adding ethanol to groundwater contaminated with uranium; the bacteria can use ethanol as an energy source. In just five months, the concentration of soluble uranium in the ecosystem dropped by 80% (Figure 42.17).

Biological Augmentation


n contrast to bioremediation, which is a strategy for renoving harmful substances from an ecosystem, **biological ugmentation** uses organisms to *add* essential materials o a degraded ecosystem. To augment ecosystem processes, estoration ecologists need to determine which factors, such s chemical nutrients, have been lost from a system and are miting its recovery.

Encouraging the growth of plants that thrive in nutrientoor soils often speeds up succession and ecosystem recovery.
I alpine ecosystems of the western United States, nitrogenxing plants such as lupines are often planted to raise nitrogenbencentrations in soils disturbed by mining and other activies. Once these nitrogen-fixing plants become established,
ther native species are better able to obtain enough soil
ttrogen to survive. In other systems where the soil has been
everely disturbed or where topsoil is missing entirely, plant
tots may lack the mycorrhizal symbionts that help them meet
eir nutritional needs (see Concept 26.2). Ecologists restoring
tallgrass prairie in Minnesota recognized this limitation and
thanced the recovery of native species by adding mycorrhizal
mbionts to the soil they seeded.

Restoring the physical structure and plant community of ecosystem does not always ensure that animal species will colonize a site and persist there. Because animals provide itical ecosystem services, including pollination and seed disreal, restoration ecologists sometimes help wildlife to reach d use restored ecosystems. They might release animals at a e or establish habitat corridors that connect a restored site places where the animals are found. They may build perches birds to use. These and other efforts can increase the biodisity of restored ecosystems and help the community persist.

(a) Wastes containing uranium were dumped in these four unlined pits for more than 30 years, contaminating soils and groundwater.

(b) After ethanol was added, microbial activity decreased the concentration of soluble uranium in groundwater near the pits.

▲ Figure 42.17 Bioremediation of groundwater contaminated with uranium at Oak Ridge National Laboratory, Tennessee.

CONCEPT CHECK 42.5

- 1. Identify the main goal of restoration ecology.
- 2. How do bioremediation and biological augmentation differ?
- **3.** WHAT IF? In what way is the Kissimmee River project a more complete ecological restoration than the Maungatautari project (see Figure 42.16)?

For suggested answers, see Appendix A.

Ecosystems: A Review

Figure 42.18 illustrates energy transfer, nutrient cycling, and other key processes for an arctic tundra ecosystem. Note the conceptual similarities between this figure and Make Connections Figure 8.20 (The Working Cell). The scale of the two figures is different, but the physical laws and biological rules that govern life apply equally to both systems.

lichen is a symbiotic mutualism between a fungus and an alga or cyanobacterium. (See Concept 41.1 and

limiting resources. For example, snow geese and caribou

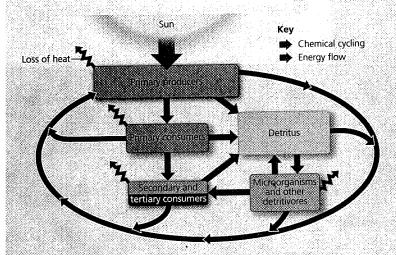
In competition, individuals seek to acquire the same

both eat cottongrass. (See Concept 41.1.)

Figure 26.29.)

Organisms Transfer Energy and Matter in Ecosystems (Chapter 42) Primary producers convert the energy in sunlight to chemical energy through photosynthesis. Their growth is often limited by abiotic factors such as low temperatures, scarce soil nutrients, and lack of light in winter. (See Figure 8.5, Figure 40.9, and Figure 42.4.) Nitrogen cycle Carbon cycle Food chains are typically short in the tundra because primary production is lower than in most other ecosystems. (See Figure 41.13.) Denitrification **10** When one organism eats another, the transfer of Cellular respiration energy from one trophic level to the next is usually Photosynthesis less than 10%. (See Figure 42.10.) N fixation **(1)** Detritivores recycle chemical elements back to primary producers. (See Figures 42.3 and 42.4.) (D) Chemical elements such as carbon and nitrogen move in cycles between the physical environment. and organisms. (See Figure 42.14.) Cnemical elements Detritivores 7 Competition (soil fungi and Mutualism prokaryotes) Algal cell Lichen **Fungal** hyphae MAKE CONNECTIONS Human actions are causing climate change, thereby affecting Earth's ecosystems—few of which have been affected as greatly as those in the Arctic. Predict whether climate change will cause evolution in arctic tundra populations. Explain. (See Concepts 1.1, 19.2, and 27.7.) Visit the Study Area in **MasteringBiology** for the Bioflix® 3-D Animations on Population Ecology (Chapter 40) and The ANIMATION Carbon Cycle (Chapter 42). CHAPTER 32 STEOSYSTEMS AND GIVE

SUMMARY OF KEY CONCEPTS


CONCEPT 42.1

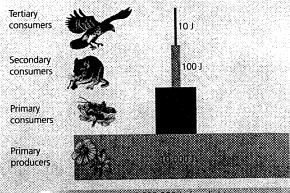
recycled).

Physical laws govern energy flow and chemical cycling in ecosystems (pp. 887–888)

- An ecosystem consists of all the organisms in a community and the abiotic factors with which they interact. Energy is conserved but degraded to heat during ecosystem processes.
 As a result, energy flows through ecosystems (rather than being
- Chemical elements enter and leave an ecosystem and cycle within it, subject to the law of conservation of mass. Inputs and outputs are generally small compared to recycled amounts, but their balance determines whether the ecosystem gains or loses an element over time.

Considering the second law of thermodynamics, would you expect the typical biomass of primary producers in an ecosystem to be greater than or less than the biomass of secondary producers in the system? Explain your reasoning.

CONCEPT 42.2


Energy and other limiting factors control primary production in ecosystems (pp. 888–892)

- Primary production sets the spending limit for the global energy budget. Gross primary production is the total energy assimilated by an ecosystem in a given period. Net primary production, the energy accumulated in autotroph biomass, equals gross primary production minus the energy used by the primary producers for respiration. Net ecosystem production is the total biomass accumulation of an ecosystem, defined as the difference between gross primary production and total ecosystem respiration.
- In aquatic ecosystems, light and nutrients limit primary production. In terrestrial ecosystems, climatic factors such as temperature and moisture affect primary production at large scales, but a soil nutrient is often the limiting factor locally.
 - If you know NPP, what additional variable do you need to know to estimate NEP? Why might measuring this variable be difficult, for instance, in a sample of ocean water?

CONCEPT 42.3

Energy transfer between trophic levels is typically only 10% efficient (pp. 892–894)

- The amount of energy available to each trophic level is determined by the net primary production and the production efficiency, the efficiency with which food energy is converted to biomass at each link in the food chain.
- The percentage of energy transferred from one trophic level to the next, called trophic efficiency, is typically 10%. Pyramids of net production and biomass reflect low trophic efficiency.

1,000,000 J of sunlight

Why would runners have a lower production efficiency when running a long-distance race than when they are sedentary?

CONCEPT 42.4

Biological and geochemical processes cycle nutrients and water in ecosystems (pp. 895–899)

- Water moves in a global cycle driven by solar energy. The carbon cycle primarily reflects the reciprocal processes of photosynthesis and cellular respiration. Nitrogen enters ecosystems through at mospheric deposition and nitrogen fixation by prokaryotes.
- The proportion of a nutrient in a particular form and its cycling in that form vary among ecosystems, largely because of differences in the rate of decomposition.
- Nutrient cycling is strongly regulated by vegetation. The Hubbard Brook case study showed that logging increases water runoff and can cause large losses of minerals.
 - If decomposers usually grow faster and decompose material more quickly in warmer ecosystems, why is decomposition in hot deserts so slow?

CONCEPT 42.5

Restoration ecologists return degraded ecosystems to a more natural state (pp. 899–901)

- Restoration ecologists harness organisms to detoxify polluted ecosystems through the process of bioremediation.
- In biological augmentation, ecologists use organisms to add essential materials to ecosystems.
- In preparing a site for surface mining and later restoration, why would engineers separate the topsoil from the deeper soil, rather than removing all soil at once and mixing it in a single pile?

TEST YOUR UNDERSTANDING

Level 1: Knowledge/Comprehension

- 1. Which of the following organisms is INCORRECTLY paired with its trophic level?
 - (A) cyanobacterium—primary producer
 - (B) grasshopper—primary consumer
 - (C) zooplankton-primary producer
 - (D) fungus-detritivore
- 2. Which of these ecosystems has the LOWEST net primary production per square meter?
 - (A) a salt marsh
- (C) a coral reef
- (B) an open ocean
- (D) a tropical rain forest
- 3. The discipline that applies ecological principles to returning degraded ecosystems to a more natural state is known as
 - (A) restoration ecology.
 - (B) thermodynamics.
 - (C) eutrophication.
 - (D) biogeochemistry.

Level 2: Application/Analysis

- 4. Nitrifying bacteria participate in the nitrogen cycle mainly by
 - (A) converting nitrogen gas to ammonia.
 - (B) releasing ammonium from organic compounds, thus returning it to the soil.
 - (C) converting ammonium to nitrate, which plants absorb.
 - (D) incorporating nitrogen into amino acids and organic compounds.
- 5. Which of the following has the greatest effect on the rate of chemical cycling in an ecosystem?
 - (A) the rate of decomposition in the ecosystem
 - (B) the production efficiency of the ecosystem's consumers
 - (C) the trophic efficiency of the ecosystem
 - (D) the location of the nutrient reservoirs in the ecosystem
- 6. The Hubbard Brook watershed deforestation experiment yielded all of the following results EXCEPT:
 - (A) Most minerals were recycled within a forest ecosystem.
 - (B) Calcium levels remained high in the soil of deforested areas.
 - (C) Deforestation increased water runoff.
 - (D) The nitrate concentration in waters draining the deforested area became dangerously high.
- 7. Which of the following would be considered an example of bioremediation?
 - (A) adding nitrogen-fixing microorganisms to a degraded ecosystem to increase nitrogen availability
 - (B) using a bulldozer to regrade a strip mine
 - (C) reconfiguring the channel of a river
 - (D) adding seeds of a chromium-accumulating plant to soil contaminated by chromium
- 8. If you applied a fungicide to a cornfield, what would you expect to happen to the rate of decomposition and net ecosystem production (NEP)?
 - (A) Both decomposition rate and NEP would decrease.
 - (B) Neither would change.
 - (C) Decomposition rate would increase and NEP would decrease.
 - (D) Decomposition rate would decrease and NEP would increase.

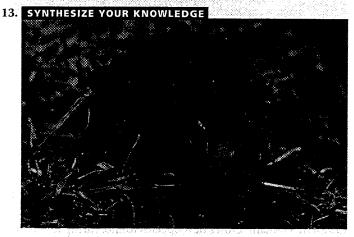
Level 3: Synthesis/Evaluation AP®

9. SCIENTIFIC INQUIRY/Science Practices 1 & 2

INTERPRET THE DATA Draw a simplified global water cycle showing ocean, land, atmosphere, and runoff from the land to the ocean.

- (a) Label your drawing with these annual water fluxes: ocean evaporation, 425 km3; ocean evaporation that returns to the ocean as precipitation, 385 km³; ocean evaporation that falls as precipitation on land, 40 km³; evapotranspiration from plants and soil that falls as precipitation on land. 70 km³; runoff to the oceans, 40 km³.
- Calculate the ratio of ocean evaporation that falls as precipitation on land compared with runoff from land to the oceans.
- (c) Explain how this ratio changes during an ice age, and why.

10. SCIENTIFIC INQUIRY/Science Practice 4


Using two neighboring ponds in a forest as your study site, design a controlled experiment to measure the effect of falling leaves on net primary production in a pond.

11. CONNECT TO BIG IDEA 1

Some biologists have suggested that ecosystems are emergent, "living" systems capable of evolving. One manifestation of this idea is environmentalist James Lovelock's Gaia hypothesis, which views Earth itself as a living, homeostatic entity—a kind of superorganism. Are ecosystems capable of evolving? If so, would this be a form of Darwinian evolution? Why or why not? Explain.

12. CONNECT TO BIG IDEA 4

Decomposition typically occurs quickly in moist tropical forests. However, waterlogging in the soil of some moist tropical forests results over time in a buildup of organic matter called peat. In a short essay (100-150 words), discuss the relationship of net primary production, net ecosystem production, and decomposition for such an ecosystem. Are NPP and NEP likely to be positive? Speculate as to what would happen to NEP if a landowner drained the water from a tropical peatland, exposing the organic matter to air.

SCIENTIFIC INQUIRY/Science Practice 7

This dung beetle (genus Scarabaeus) is burying a ball of dung it has collected from a large mammalian herbivore in Kenya. Explain why this process is important for the cycling of nutrients and for primary production.

For selected answers, see Appendix A.